Complexity Aversion in Labor Choice Under Demand
Uncertainties

1 Model Set Up

e An individual ¢ has 1 unit of labor supply.

e She has access to a set J of finitely-many job types from a distribution of job types.
Each job j has a random payoff v; ~ F(j) per unit of time.

— She knows F(j) Vj € J

e She chooses an allocation z € ®(J) C A(J) to maximize expected utility

EU, = / [S | arGo-arGiap - o021 1)

jeJ
where ¢ is a disutility from allocation and J; = {j € J : x; # 0}.

e ¢’s problem is thus:

maX,eq(s // : vizj | dF(j1)...dF (5 5)) — g(|i]) (2)

jeJ

e if the individual is complexity averse, then we have that:

1. g(-) >0 for |J;| > 1
— Ex: g(-) = 6(]J;])> where 0 is the complexity aversion coefficient.
2. ®(J) C A(J) is restricted to a subset of simple allocations (with ®(J) C &(J)
if JC.J).
— Ex: a “simple” allocation could only allow for numbers with one digit after

the decimal.

e Suppose she (costlessly) learns (i.e., Upew(h)) about a new job opportunity and can
choose to add this jpew to J; so that J! = {J;, jnew }-

— if she is complexity averse, adding this j,e, Will incur a disutility of allocation.
Thus, she will add jey if, given ®(J'):

// > vy | dE(jr)..dF (i) = 9(1]) // > vz | dF(jr)...dF (G 5) — g(| i)

J! jeJ jeJ

2 Predictions

Complexity aversion will lead to:

1. rigid hour allocations. I.e., small changes in payoff distributions will lead to no
changes in hour allocations.

2. smaller menus J;.

3. less take-up (undervaluation) of profitable opportunities.

3 Motivating Simple Example

Consider two risk-averse individuals, a and b, both with Bernouilli utility u(c) = /¢, and
the same set of job type options J with |J| = 3. In particular, for each job let F(j) be
such that individuals get v; with probability p; and 0 otherwise. So, the expected wage
for supplying x; hours to job j is vj - x; - p;.

Let a be not complexity averse; gq(|Jp|) = 0 and ®,(J) = A(J). Let b be complexity
averse; gy(|Jp]) = Op|Jp|? with 6 > 0 and ®,(J) C A(J). In particular, we restrict ®,(J)
so that b can either:

1. perfectly optimize over any 2 jobs (|Jp| = 2) or

2. evenly allocate over > 2 jobs (|J,| > 2).

Figure 1: Visualization of ®(J)
J3

J1 J2

J1 J2
Notes: The line on the left represents b’s options when |J| = 2 and the triangle
on the right represents b’s options when |J| > 2

a, then, solves the following problem:

maxmeA(J) //u Zvja:j dF(]l)dF(jg)
J

jeJ

and b solves:

maxm@b(])/j/u (Zvﬂ‘j) dF(j1)...dF(j3) — g(]Ji])

jeJ

	Model Set Up
	Predictions
	Motivating Simple Example

