Network Formation and Social Norms Under Complementarities: Statics and Dynamics

1 Static Model

1.1 Set Up

- Consider a set of N individuals. Each individual has a type $\theta_i = (\theta_1, ..., \theta_K) \in \Theta$. Individuals know the players.
- Define the undirected network $g \in G$ as an $N \times N$ symmetric matrix where $g_{i,j} = g_{j,i} = 1$ there is a link between i and j and $g_{i,j} = g_{j,i} = 0$ otherwise. The space of undirected networks G is the set of all symmetric $N \times N$ matrices with elements in $\{0, 1\}$.
- Define *i*'s neighbors $N_i(g) = j \neq i : g_{i,j} = 1$ as the set of individuals with whom *i* shares a link. *i*'s degree $d_i(g) = |N_i(g)|$.
- The game has two periods. In the first, players form links consensually (starting from the empty network). In the second, players choose actions from a set of actions X.
- A strategy of player $i \in N$ is a vector $s_i = (\gamma_i, x_i)$.

$$\gamma_{i} = (\gamma_{i,1}, ..., \gamma_{i,i-1}, 1, \gamma_{i,i+1}, ..., \gamma_{i,N})$$
 with $\gamma_{i,j} \in [0, 1]$

- $-x_i = (x_{i,1}, ..., x_{i,K}) \in X \subseteq \Re^K_+$ with $K < \infty$.
- The network $g \in G$ is then created where $g_{ij} = g_{ji} = 1$ if $\gamma_{ij} = \gamma_{ji} = 1$ and $g_{ij} = g_{ji} = 0$ otherwise.
- Utilities take the following form:

$$u_i(x,g) = \underbrace{\theta_i x_i}_{\text{Private benefit}} + \underbrace{\left[ax_i \sum_{j \in N_i(g)} x_j\right]}_{\text{Complementarities}} - \underbrace{c_x(x_i)}_{\text{Cost of X}} - \underbrace{c_d d_i(g)}_{\text{Cost of Links}}$$

where

- -a is a K-vector of complementarities
- $-c_d(d_i(g))$ is a cost function $c_d: G \to \Re_+$. $d_i(g)$ is the degree (number of links *i* has) given a network *g*.
- $-c_X(x_i)$ is a cost function $c_X: X \to \Re_+$

1.2 Equilibrium Concept(s)

- We are interested in two equilibrium concepts.
 - 1. **Pairwise Stability:** No two nodes *i* and *j* with $g_{i,j} = 0$ are better off forming a link and no two nodes *i* and *j* with $g_{i,j} = 1$ are better of breaking their link.
 - 2. Efficiency: $U(x,g) = \sum_i u_i(x,g) \ge \sum_i u_i(x',g') = U(x',g') \ \forall x' \in X, \ \forall g' \in G$

1.3 Motivating "Simple" Example

There are ten individuals (N = 10) and two types $(|\Theta| = 2)$. Individuals of the first type have $\theta_{i,1} > \theta_{i,2}$ and individuals of the second type have $\theta_{i,1} < \theta_{i,2}$. Let the action space $X = \{0,1\}^2$ consist of two possible actions: $x_{i,1}$ is going to the bar on Friday and $x_{i,2}$ is going to the bar on Saturday...

2 Dynamic Model

2.1 Set Up

- Consider a set of N infinitely-lived individuals. Each individual has a type $\theta_i = (\theta_1, ..., \theta_K) \in \Theta$. At t = 0, individuals do not know the players.
- Define the undirected network $g(t) \in G$ as an $N \times N$ symmetric matrix where $g_{i,j}(t) = g_{j,i}(t) = 1$ there is a link between *i* and *j* and $g_{i,j}(t) = g_{j,i}(t) = 0$ otherwise. The space of undirected networks *G* is the set of all symmetric $N \times N$ matrices with elements in $\{0, 1\}$.
- Define *i*'s neighbors $N_i(g(t)) = j \neq i : g_{i,j}(t) = 1$ as the set of individuals with whom *i* shares a link. *i*'s degree $d_i(g(t)) = |N_i(g(t))|$. Individuals observe the actions $x_j(t)$ of their neighbors.
 - When individuals *i* and *j* meet in period *t*, they learn the action choices $x_i(t-1)$ and $x_j(t-1)$.
- Let $p(g_{ij}(t-1), x_i(t-1), x_j(t-1))$ represent the probability that individuals i and j meet in period t, which is a function of their action choices $x_i(t-1)$ and $x_j(t-1)$ from the previous period. If $g_{ij}(t-1) = 1$, $p(\cdot) = 0$
- In each period t, individuals first "meet" a random subset $n_i(t) \subseteq N$ where $i \in n_j(t) \iff j \in n_i(t)$. They can choose to make links with the people they meet, and break any existing links. Then, players choose from a set of actions X.
- A strategy of player $i \in N$ in period t is a vector $s_i(t) = (\gamma_i(t), x_i(t))$.

- $\gamma_i(t) = (\gamma_{i,1}(t), ..., \gamma_{i,i-1}(t), 1, \gamma_{i,i+1}(t), ..., \gamma_{i,N}(t)) \text{ with } \gamma_{i,j}(t) \in \{0, 1\} \text{ and } \gamma_{i,j}(t) \gamma_{i,j}(t-1) > 0 \implies j \in n_i(t)$
 - * Individuals can only form links with people they "meet" in a period t, but can break links at any time.
- $-x_i(t) = (x_{i,1}(t), ..., x_{i,K}(t)) \in X \subseteq \Re^K_+$ with $K < \infty$.
- The network $g(t) \in G$ is then created where $g_{ij}(t) = g_{ji}(t) = 1$ if $\gamma_{ij}(t) = \gamma_{ji}(t) = 1$ and $g_{ij}(t) = g_{ji}(t) = 0$ otherwise.
- Utilities in each period take the same form, but are indexed by time:

$$U_i(x(t), g(t), t) = \underbrace{\theta_i x_i(t)}_{\text{Private benefit}} + \underbrace{\left[ax_i(t)\sum_{j\in N_i(g(t))} x_j(t)\right]}_{\text{Complementarities}} - \underbrace{c_x(x_i(t))}_{\text{Cost of X}} - \underbrace{c_d d_i(g(t))}_{\text{Cost of Links}}$$

where

- -a is a K-vector of complementarities
- $-c_d(d_i(g(t)))$ is a cost function $c_d: G \to \Re_+$. $d_i(g)$ is the *degree* (number of links *i* has) given a network *g*.

:

 $-c_X(x_i(t))$ is a function $c_X: X \to \Re^+$

Period t: Meeting set $n_i(t)$ is revealed

Individuals choose
$$\gamma_i(t)$$

Network $g(t)$ is formed
Individuals choose action $x_i(t)$
Utility $U_i(t)(x(t), g(t))$ realized

Period t+1:

:

Figure 1: Game Tree for One Period

2.2 Equilibrium Concept(s)

- We are interested in two equilibrium concepts.
 - 1. **Pairwise Stability:** No two individuals *i* and *j* with $g_{i,j}(t) = 0$ are better off forming a link and no two nodes *i* and *j* with $g_{i,j}(t) = 1$ are better of breaking their link.
 - (Feasible) Pairwise Stability is a weakening of this equilibrium concept where we require pairwise stability only for individuals who have a non-zero probability of meeting.
 - 2. Efficiency: $U(x(t), g(t), t) = \Sigma_i u_i(x(t), g(t), t) \ge \Sigma_i u_i(x', g', t) = U(x', g', t)$ $\forall x' \in X, \forall g' \in G$